
Outline

Network Computing and Efficient Algorithms
Leader Election

Xiang-Yang Li and Xiaohua Xu

School of Computer Science and Technology
University of Science and Technology of China (USTC)

September 1, 2021

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 1 / 27

Outline

Leader Election

We concentrate the ring topology.

Many interesting challenges in distributed computing already
reveal the root of the problem in the special case of the ring.

Paying attention to the ring also makes sense from a practical
point of view as some real world systems are based on a ring
topology.

Problem 3.1 Each node eventually decides whether it is a leader
or not, subject to the constraint that there is exactly one leader.

More formally, nodes are in one of three states:

Undecided
Leader
Not leader

Initially every node is in the undecided state.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 2 / 27

Outline

Some Definitions

Definition (Anonymous)
A system is anonymous if nodes do not have unique identifiers.

Definition (Uniform)
An algorithm is called uniform if the number of nodes n is not known
to the algorithm (to the nodes, if you wish). If n is known, the
algorithm is called non-uniform.

Whether a leader can be elected in an anonymous system
depends on whether the network is symmetric or asymmetric.

Symmetric network: ring, complete graph, complete bipartite
graph, etc.
Asymmetric network: star, single node with highest degree, etc.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 3 / 27

Outline

Anonymous Leader Election

Lemma
After round k of any deterministic algorithm on an anonymous ring,
each node is in the same state sk.

Proof.
Proof by induction: All nodes start in the same state. A round in a
synchronous algorithm consists of the three steps sending, receiving,
local computation (see Definition 1.8). All nodes send the same
message(s), receive the same message(s), do the same local
computation, and therefore end up in the same state.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 4 / 27

Outline

Anonymous Leader Election

Theorem (Anonymous Leader Election)
Deterministic leader election in an anonymous ring is impossible.

Proof.
(with above Lemma): If one node ever decides to become a leader (or
a non-leader), then every other node does so as well, contradicting the
problem specification for n > 1. This holds for non-uniform
algorithms, and therefore also for uniform algorithms. Furthermore, it
holds for synchronous algorithms, and therefore also for
asynchronous algorithms.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 5 / 27

Outline

Anonymous Leader Election

Theorem also holds for other symmetric network topology (e.g.,
complete graphs, complete bipartite graphs).

Theorem does generally not hold for randomized algorithms.

randomization does not always help.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 6 / 27

Outline

Asynchronous Ring

Assumption
Non-anonymity: each node has a unique identifier.

Trivial leader election algorithm
Simply elect the node with, e.g., the highest ID

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 7 / 27

Outline

Clockwise Leader Election

Node v wakes up, then executes.

Node v receives a message −→ wakes up.

ALGORITHM 3.6: CLOCKWISE LEADER ELECTION()
1: Each node v executes the following code:
2: v sends a message with its identifier (for simplicity also v) to its

clockwise neighbor.
3: v sets m := v {the largest identifier seen so far }
4: if v receives a message w with w > m then
5: v forwards message w to its clockwise neighbor and sets

m := w.
6: v decides not to be the leader, if it has not done so already.
7: if v receives its own identifier v then
8: v decides to be the leader.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 8 / 27

Outline

Example

1

5

2

6

3

7

4

8Active

Active

Active

Active

Active

Active

Active

Active
For the sake of simplicity, we assume

all links have the same rate.

Active

Passive

Passive

Passive

Passive

Passive

Passive

Passive

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 9 / 27

Outline

Example

1

5

2

6

3

7

4

8Active

Active

Active

Active

Active

Active

Active

Active

Probe
id:6

Leader
TTL:1

Probe
id:6

Leader
TTL:1

Active

Passive

Passive

Passive

Passive

Passive

Passive

Passive

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 9 / 27

Outline

Example

1

5

2

6

3

7

4

8Active

Active

Active

Active

Active

Active

Passive Passive

Reply
id:6

Leader

Reply
id:6

Leader

Active

Passive

Passive

Passive

Passive

Passive

Passive

Passive

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 9 / 27

Outline

Example

1

5

2

6

3

7

4

8Active

Active

Active

Active

Active

Active

Passive Passive

Probe
id:6

Leader
TTL:2

Probe
id:6

Leader
TTL:2

Active

Passive

Passive

Passive

Passive

Passive

Passive

Passive

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 9 / 27

Outline

Example

1

5

2

6

3

7

4

8Active

Active

Active

Active

Active

Active

Passive Passive

Probe
id:6

Leader
TTL:1

Probe
id:6

Leader
TTL:1

Active

Passive

Passive

Passive

Passive

Passive

Passive

Passive

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 9 / 27

Outline

Example

1

5

2

6

3

7

4

8Active

Active

Active

Active

Active

Passive Passive

Passive
Reply
id:6

Leader

Reply
id:6

Not Leader

Active

Passive

Passive

Passive

Passive

Passive

Passive

Passive

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 9 / 27

Outline

Example

1

5

2

6

3

7

4

8Active

Active

Active

Active

Active

Passive Passive

Passive

Reply
id:6

Leader

Reply
id:6

Not Leader

Active

Passive

Passive

Passive

Passive

Passive

Passive

Passive

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 9 / 27

Outline

Example

1

5

2

6

3

7

4

8Active

Active

Active

Active

Passive Passive

Passive

Passive

Active

Passive

Passive

Passive

Passive

Passive

Passive

Passive

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 9 / 27

Outline

Example

1

5

2

6

3

7

4

8Active

Active

Active

Active

Passive Passive

Passive

Passive

· · ·

Active

Passive

Passive

Passive

Passive

Passive

Passive

Passive

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 9 / 27

Outline

Example

1

5

2

6

3

7

4

8

Active

Passive

Passive

Passive

Passive

Passive

Passive

Passive

Probe
id:8

Leader
TTL:8

Probe
id:8

Leader
TTL:8

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 9 / 27

Outline

Example

1

5

2

6

3

7

4

8

Active

Passive

Passive

Passive

Passive

Passive

Passive

Passive

Probe
id:8

Leader
TTL:7

Probe
id:8

Leader
TTL:7

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 9 / 27

Outline

Example

1

5

2

6

3

7

4

8

Active

Passive

Passive

Passive

Passive

Passive

Passive

Passive

· · ·

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 9 / 27

Outline

Example

1

5

2

6

3

7

4

8

Active

Passive

Passive

Passive

Passive

Passive

Passive

Passive

Probe
id:8

Leader
TTL:1

Probe
id:8

Leader
TTL:1

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 9 / 27

Outline

Example

1

5

2

6

3

7

4

8

Active

Passive

Passive

Passive

Passive

Passive

Passive

Passive

Leader

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 9 / 27

Outline

Clockwise Leader Election

ALGORITHM 3.6: CLOCKWISE LEADER ELECTION()
1: Each node v executes the following code:
2: v sends a message with its identifier (for simplicity also v) to its

clockwise neighbor.
3: v sets m := v {the largest identifier seen so far }
4: if v receives a message w with w > m then
5: v forwards message w to its clockwise neighbor and sets

m := w.
6: v decides not to be the leader, if it has not done so already.
7: if v receives its own identifier v then
8: v decides to be the leader.

Theorem
Algorithm 3.6 is correct. The time complexity is (n). The message
complexity is (n2).

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 10 / 27

Outline

Proof of Theorem 3.7

Proof.
Let node z be the node with the maximum identifier. Node z sends its
identifier in clockwise direction, and since no other node can swallow
it, eventually a message will arrive at z containing it. Then z declares
itself to be the leader. Every other node will declare non-leader at the
latest when forwarding message z. Since there are n identifiers in the
system, each node will at most forward n messages, giving a message
complexity of at most n2. We start measuring the time when the first
node that ”wakes up” sends its identifier. For asynchronous time
complexity (Definition 2.8) we assume that each message takes at
most one time unit to arrive at its destination. After at most n−1 time
units the message therefore arrives at node z, waking z up. Routing
the message z around the ring takes at most n time units. Therefore
node z decides no later than at time 2n−1. Every other node decides
before node z.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 11 / 27

Outline

Remarks

Note that in Algorithm 3.6 nodes distinguish between clockwise
and counterclockwise neighbors. This is not necessary: It is okay
to simply send your own identifier to any neighbor, and forward
a message to the neighbor you did not receive the message from.
So nodes only need to be able to distinguish their two neighbors.

Careful analysis shows, that while having worst-case message
complexity of O(n2), Algorithm 3.6 has an average message
complexity of O(n logn). Can we improve this algorithm?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 12 / 27

Outline

Radius Growth

ALGORITHM 3.8: RADIUS GROWTH()
1: Each node does the following:
2: Initially all nodes are active. all nodes may still become leaders
3: Whenever a node v sees a message w with w > v, then v decides

to not be a leader and becomes passive.
4: Active nodes search in an exponentially growing neighborhood

(clockwise and counterclockwise) for nodes with higher
identifiers, by sending out probe messages. A probe message
includes the ID of the original sender, a bit whether the sender
can still become a leader, and a time-to-live number (TTL). The
first probe message sent by node v includes a TTL of 1.

5: Nodes (active or passive) receiving a probe message decrement
the TTL and forward the message to the next neighbor; if their ID
is larger than the one in the message, they set the leader bit to
zero, as the probing node does not have the maximum ID. If the
TTL is zero, probe messages are returned to the sender using a
reply message. The reply message contains the ID of the receiver
(the original sender of the probe message) and the leader-bit.
Reply messages are forwarded by all nodes until they reach the
receiver.

6: Upon receiving the reply message: If there was no node with
higher ID in the search area (indicated by the bit in the reply
message), the TTL is doubled and two new probe messages are
sent (again to the two neighbors). If there was a better candidate
in the search area, then the node becomes passive.

7: If a node v receives its own probe message (not a reply) v decides
to be the leader.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 13 / 27

Outline

Radius Growth

Theorem
Algorithm 3.8 is correct. The time complexity is O(n). The message
complexity is O(n logn).

Proof.

Correctness is as in Theorem 3.7. The time complexity is O(n) since the
node with maximum identifier z sends messages with round-trip times
2,4,8,16, · · · ,2 ·2k with k · log(n+1). (Even if we include the additional
wake-up overhead, the time complexity stays linear.) Proving the message
complexity is slightly harder: if a node v manages to survive round r, no
other node in distance 2r (or less) survives round r. That is, node v is the
only node in its 2r-neighborhood that remains active in round r+1. Since
this is the same for every node, less than n = 2r nodes are active in round
r+1. Being active in round r costs 2 ·2 ·2r messages. Therefore, round r
costs at most 2 ·2 ·2r · n

2r−1 = 8 nmessages. Since there are only logarithmic
many possible rounds, the message complexity follows immediately.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 14 / 27

Outline

Radius Growth (cont’d)

This algorithm is asynchronous and uniform as well.

The question may arise whether one can design an algorithm
with an even lower message complexity.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 15 / 27

Outline

Synchronous Ring

Basic idea:
In the synchronous model, not receiving a message is information
as well.

Assumptions:
Non-uniform algorithm.
Every node starts at the same time.
The node with the minimum identifier becomes the leader.
Identifiers are integers.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 16 / 27

Outline

Synchronous Ring Leader Election

ALGORITHM 3.17: SYNCHRONOUS LEADER ELECTION()
1: Each node v concurrently executes the following code:
2: The algorithm operates in synchronous phases. Each phase

consists of n time steps. Node v counts phases, starting with 0.
3: if phase=v and v did not yet receive a message then
4: v decides to be the leader
5: v sends the message ǐs leader” around the ring

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 17 / 27

Outline

Analysis

Message complexity is indeed n, the number of nodes.
The time complexity is huge.

If m is the minimum identifier, the time complexity is m ·n.
Why?

The synchronous start and the non-uniformity assumptions can
be dropped.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 18 / 27

Outline

Remarks

There are several lower bounds for the synchronous model:
comparison based algorithms or algorithms where the time
complexity cannot be a function of the identifiers have message
complexity (n logn) as well.

In general graphs, efficient leader election may be tricky. While
time-optimal leader election can be done by parallel
flooding-echo (see Chapter 2), bounding the message complexity
is more difficult.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 19 / 27

Outline

What is the message lower bound for Leader-election in
Asynchronous Ring?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 20 / 27

Outline

Lower Bounds for Leader Election

Definition (Execution)
An execution of a distributed algorithm is a list of events, sorted by
time. An event is a record (time, node, type, message), where type is
”send” or ”receive”.

Some assumptions:
No two events happen at exactly the same time.
If more than one message is in transit, we can choose which one
arrives first.
If two messages are transmitted over the same directed edge, the
message first transmitted will also be received first (”FIFO”).
Nodes may wake up at arbitrary times (but at the latest when
receiving the first message)
Uniform algorithms (can be dropped).
Every node that is not the leader must know the identity of the
leader (can be dropped).

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 21 / 27

Outline

Open Schedule

Definition (Open Schedule)
A schedule is an execution chosen by the scheduler. An open
(un-directed) edge is an edge where no message traversing the edge
has been received so far. A schedule for a ring is open if there is an
open edge in the ring.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 22 / 27

Outline

Induction

Lemma
Given a ring R with two nodes, we can construct an open schedule in
which at least one message is received. The nodes cannot distinguish
this schedule from one on a larger ring with all other nodes being
where the open edge is.

Proof.
Let the two nodes be u and v with u < v. Node u must learn the
identity of node v, thus receive at least one message. We stop the
execution of the algorithm as soon as the first message is received. (If
the first message is received by v, bad luck for the algorithm!) Then
the other edge in the ring (on which the received message was not
transmitted) is open. Since the algorithm needs to be uniform, maybe
the open edge is not really an edge at all, nobody can tell. We could
use this to glue two rings together, by breaking up this imaginary
open edge and connect two rings by two edges. An example can be
seen in Figure 3.13.Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 23 / 27

Outline

Induction

Lemma
By gluing together two rings of size n/2 for which we have open
schedules, we can construct an open schedule on a ring of size n. If
M(n/2) denotes the number of messages already received in each of
these schedules, at least 2M(n/2)+n/4 messages have to be
exchanged in order to solve leader election.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 24 / 27

Outline

Lower Bound

Lemma
Any uniform leader election algorithm for asynchronous rings has at
least message complexity M(n)≥ n4(logn+1).

Proof.
By induction: For the sake of simplicity, we assume n being a power
of 2. The base case n = 2 works because of Lemma 3.12 which
implies that M(2)≥ 1 = 2

4(log2+1). For the induction step, using
Lemma 3.14 and the induction hypothesis, we have

M(n) = 2 ·M(
n
2
)+

n
4

≥ 2 ·
(

n
8

(
log n

2 +1
))

+ n
4

=n 4logn+ n
4=

n
4 (logn+1)

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 25 / 27

Outline

Leader Election for General Networks

This technique in essence is similar to finding a Minimum
Spanning Tree (MST)

the root of the tree becomes the leader.
The basic idea in this method is

individual nodes merge with each other to form bigger structures.
The result of this algorithm is a tree (a graph with no cycle)
whose root is the leader of entire system.
The cost of mega-merger method is O(m+n logn) where m is the
number of edges and n is the number of nodes.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 26 / 27

